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Abstract

The third-order aberration formulae we have proved in a previous paper, starting from Fermat’s principle and from the
idea of stigmatic paths, are here applied to analyze and to project Houghton’s cameras and Houghton–Cassegrain’s
telescopes. The final values of the radii of the two-lens corrector are obtained taking into account also the thickness of
lenses and the fifth-order aberrations.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In [1] we proposed a new approach to geometrical optics based both on Fermat’s principle and on the intro-
duction of suitable optical paths: the stigmatic paths. Although these paths are not rays, they have a known
behavior and can be used instead of the effective rays to evaluate the optical path lengths up to fourth-order
terms in the coordinates of the rays. All the third-order aberration theory of an optical system with a symme-
try of revolution around an axis is easily derived without resorting to the whole Hamiltonian formalism and
Seidel’s variables (see [4–6]). The formulae which describe the third-order aberrations are different from
Seidel’s ones but give the same numerical results. In this paper we apply our formulae to particular astronom-
ical optical systems: Houghton’s cameras and telescopes.

Let us consider the optical system formed by a spherical mirror S and a circular stop whose center is located
at the center of curvature of S. If �R denotes the curvature radius of S, then it is well known that S forms an
image of an object at infinity on the spherical surface r of radius f = �R/2 which crosses the optical axis a at a
point of abscissa �f. This image, owing to the symmetry of this combination with respect to the center A of S,
is not affected by off-axis aberrations (coma, astigmatism and distortion) but is affected by a substantial spher-
ical aberration. In 1920s the optician Schmidt introduced in the plane of the stop a corrector C, i.e., a thin
plate having a planar face and the other one with a fourth-order profile to balance the spherical aberration
of the primary mirror S. The resulting astronomical camera supplies a very sharp image on the sphere r
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but the length of the tube containing C and S becomes too long when the focal f of the primary mirror
increases. Moreover, in order to obtain the required fourth-order profile a very difficult and expensive man-
ufacturing is necessary. For these reasons, opticians tired to design a camera in which the Schmidt aspheric
corrector was replaced by a corrector that could be more easily manufactured. In this paper we are interested
in the combination proposed in 1944 by Houghton [3].1

Houghton’s corrector is an afocal combination C of two or three lenses which are made with the same
kind of glass. This corrector introduces a spherical aberration compensating for that of the mirror S. Buch-
roeder [7] introduced at the center of curvature of the primary mirror S a suitable afocal set of three lenses.
An exhaustive analysis of the two-lens correctors was carried out by Sigler [8] and, more recently, by Blakley
and Riccardi [9] both for cameras and Cassegrain telescopes (see also [10]). This analysis leads to the follow-
ing results: it is possible to compensate the spherical aberration and coma almost for any position of the
corrector with respect to S. However, in order to control the astigmatism, it is necessary to use a conic
mirror S.

All the above results are derived assuming that:

• the thickness of the lenses can be neglected;
• the conditions to apply the third-order aberration theory are satisfied.

These assumptions lead to data that cannot be accepted as final values of the radii of the lenses composing the
corrector of the camera or of the telescope. However, these data represent a good starting point to apply one
of the optimization methods contained in the professional programs for the analysis of an optical system. It is
important to remark that these methods, which are based on the minimization of a suitable error function,
require many attempts and frequently do not supply a satisfactory result.

In this paper, we again analyze cameras and Cassegrain telescopes with a Houghton’s two-lens corrector
starting from the third-order aberration formulae derived in [1]. We reach the following results:

1. The dependence of the radii of the lenses forming the corrector, which eliminate spherical aberration
and coma, is determined as function of the corrector position, neglecting the thickness of lenses. In
such a way it is possible to locate the corrector in the positions corresponding to largest radii in order
to reduce the higher-order aberrations and make easier the manufacturing. This analysis is carried out
also for correctors having different radii. In particular, it is shown that this choice leads to larger radii
of the surfaces of the corrector with respect to the case of correctors with the same bendings of the two
lenses.

2. The equations to have an afocal corrector with given spherical aberration and coma when the lenses
have a given thickness are determined by resorting Mathematica. Moreover, still by the software Math-
ematica, these equations are solved by Newton’s method using the approximate values obtained in the
item 1.

3. These optical combinations are analyzed with the professional optical program OSLO to evaluate the fifth-
order spherical aberration and coma. In such a way it is possible to apply the procedure of item 2 imposing
that the corrector has third-order spherical aberration and coma to balance the higher-order ones.

It is worthwhile to remark that the final project does not need any further correction.
In Section 2 we recall the notations and formulae of paper [1]. In Sections 3–5 the Houghton cameras are

analyzed whereas Section 6 is devoted to the Hougthon–Cassegrain telescopes. Sections 3 and 4 conclude with
spot diagrams referring to cameras in which the primary mirror has a focal ratio f/3.5 and f/3, respectively. At
the end of Section 5 a spot diagram of a camera using a conic mirror with a focal ratio f/2.5 is showed. Finally,
Section 6 ends with a spot diagram referring to a Hougthon–Cassegrain telescope with a f/2.5 primary mirror.
In all the examined cases the classical approximations do not give satisfactory results. The proposed projects
employ the common BK7 glass.
1 In the paper [2] we have analyzed Schmidt’s cameras.
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2. Third-order monochromatic aberration formulae

In this section we recall the notations we used in [1] as well as the third-order monochromatic aberration
formulae we derived in that paper.

Let S be an optical system composed by n surfaces of revolution S1, . . . ,Sn, having a rotational symmetry
around a common axis a which is called the optical axis. These surfaces have curvature radii R1, . . . ,Rn at the
vertices O1, . . . ,On, where they intersect a (see Fig. 1). Moreover, let ti be the distance of Si+1 from Si, eval-
uated along a, and Ni, N 0i � N iþ1 the refractive indices of the media before and after Si, respectively. With
Oixiyizi, i = 1, . . . ,n, we denote Carthesian frames of reference having their origins at the vertices Oi and
the Ozi-axes coinciding with a. Finally, all the axes Oixi, i = 2, . . . ,n, are chosen parallel to O1x1.

Let p1 be an object plane, orthogonal to a, and X a circular region of p1, with its center at the intersection
point between a and p1 (see Fig. 1). Usually, the purpose of the optical project is to determine which optical
and geometrical characteristics of S guarantee that the whole circle X is transformed by S into a circle X 0,
whose center coincides with a \ p0n, where p0n is a prefixed image plane. In other words, it is required that
the correspondence between the coordinates (x1,y1) of any object point belonging to X and the coordinates
ðx0n; y0nÞ of the corresponding image point of X 0 are given by the relations:
x0n ¼ M1;nx1; y0n ¼ M1;ny1; ð1Þ

where the constant M1,n is said the magnification factor of S relative to the planes p1 and p0n. In particular,
Eqs. (1) imply that the image preserves the form of the object.

It is well known that, for small values of the object coordinates and rays which form small angles with the
optical axis (Gaussian approximation), the formulae
N 0i
Ri
� N 0i

z0i
¼ Ni

Ri
� N i

zi
; ð2Þ

Mi;iþ1 ¼
Niz0i
N 0izi

; ð3Þ
together with the relations
ziþ1 ¼ z0i � ti; Niþ1 ¼ N 0i; yiþ1 ¼ y0i; ð4Þ

allow us to evaluate the pair of conjugate planes for any surface Si and the relative magnification between
these planes so that the final position of the image plane p0n and the total magnification
M1;n ¼ M1;2; . . . ;Mn�1;n ð5Þ

are determined.

Finally, supposing that the optical system includes an aperture stop pa, we denote by Sen the part of S

before pa and by Sex the part which follows pa. Then, the conjugate plane pe of pa with respect to Sen is called
the entrance pupil of S, whereas the conjugate plane p0e of pa with respect to Sex is the exit pupil of S. We denote
by w the distance of pe from the vertex O1 of the first surface S1 of S.

It is evident that the behavior of any ray starting from the object point (x1,y1) 2 p1 and crossing the
entrance pupil at the point (xe,ye) is completely determined. On the other hand, owing to the symmetry of
revolution of S around the optical axis a, it is sufficient to consider only object points belonging to the axis
Fig. 1. Optical system.
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O1y1. For these reasons, the numbers (y1,xe,ye) will be called the coordinates of the ray. From the refraction
and reflection laws we derive that the ray (y1,xe,ye) intercepts the image plane p0n at a point
x0n ¼ x0nðy1; xe; yeÞ; y 0n ¼ y0nðy1; xe; yeÞ: ð6Þ
The functions
�x ¼ x0nðy1; xe; yeÞ; �y ¼ y0nðy1; xe; yeÞ �M1;ny1 ð7Þ
are the aberration functions of S. Owing to the symmetry of revolution of S, their power expansion includes
only odd power terms of degree 3, 5, etc. If only the first terms are taken into account, then we consider the
primary aberrations or the third-order aberrations. We note that the variable y1 can be substituted by the angle
h that the ray forms with the optical axis. This angular variable is necessary when the object is at infinity.

In [1] we have proved that the third-order aberration functions have the following form:
�x ¼
z0n � w0n
N 0nMe;1;n

ð4D1ðx2
e þ y2

eÞxe þ 2D2xeyehþ 2D3yeh
2Þ; ð8Þ

�y ¼
z0n � w0n
N 0nMe;1;n

ð4D1ðx2
e þ y2

eÞye þ D2ðx2
e þ 3y2

eÞhþ 2D4yeh
2 þ D5h

3Þ; ð9Þ
where w0n denotes the distance of the exit pupil from the last surface Sn and Me,1,n is the magnification factor
relative to the pair of conjugate planes pe, p0e. It remains to define the expressions of the coefficients D1, . . . ,D5.

To this end, we first define the quantities relative to any surface Si
Ci;1 ¼ �
N 2

i

8

1

N 0iz
0
i
� 1

N izi

� �
1

zi
� 1

Ri

� �2

þ N 0i � Ni

8R3
i

� ðN 0i � NiÞai;4; ð10Þ

Ci;2 ¼
N 2

i

2

1

N 0iz
0
i
� 1

N izi

� �
1

zi
� 1

Ri

� �
; ð11Þ

Ci;3 ¼
N i

4

N 02i � N 2
i

N 02i

� �
1

zi
� 1

Ri

� �
; ð12Þ

Ci;4 ¼ Ci;3 �
N 2

i

2

1

N 0iz
0
i
� 1

Nizi

� �
; ð13Þ

Ci;5 ¼ �
Ni

2z3
i

N 02i � N 2
i

N 02i
; ð14Þ
where ai,4 denotes the aspheric constant which appears in the approximate equation of the surface Si
Zi ¼
1

2Ri
ðX 2

i þ Y 2
i Þ þ ai;4ðX 2

i þ Y 2
i Þ

2
: ð15Þ
In particular, when Si is obtained rotating about a a conic with a conic constant K, it is
ai;4 ¼
1þ K

8R3
i

: ð16Þ
Then, we introduce the quantities
ci ¼
zi

zi � wi
; di ¼

wi

zi � wi
; ð17Þ
as well as the coefficients
C�i;1 ¼ c4
i Ci;1; ð18Þ

C�i;2 ¼ c2
i ðCi;2 � 4zidiCi;1Þ; ð19Þ

C�i;3 ¼ Ci;3 � zidiCi;2 þ 2z2
i d2

i Ci;1; ð20Þ
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C�i;4 ¼ Ci;4 � 3zidiCi;2 þ 6z2
i d2

i Ci;1; ð21Þ

C�i;5 ¼
1

c2
i
ðCi;5 � 2zidiCi;4 þ 3z2

i d2
i Ci;2 � 4z3

i d3
i Ci;1Þ: ð22Þ
Finally, we have that
D1 ¼ C�1;1 þ
Xn

i¼2

M4
e;1;i�1C�i;1; ð23Þ

D2 ¼ C�1;2 þ N 1

Xn

i¼2

1

Ni
M2

e;1;i�1C�i;2; ð24Þ

D3 ¼ C�1;3 þ N 2
1

Xn

i¼2

1

N 2
i

C�i;3; ð25Þ

D4 ¼ C�1;4 þ N 2
1

Xn

i¼2

1

N 2
i

C�i;4; ð26Þ

D5 ¼ C�1;5 þ N 3
1

Xn

i¼2

1

N 3
i M2

e;1;i�1

C�i;5: ð27Þ
Let us suppose that the distances ti, i = 1, . . . ,n � 2 among the first n � 1 surfaces of the optical system S can
be neglected. If the aperture stop is located on the first surface S1, then the first n � 1 surfaces do not modify
the entrance and the exit pupils which coincide with the aperture stop. Moreover, if the system S1, . . . ,Sn�1 is
afocal, i.e., its total focal is infinity, and the object is at infinity, then this subsystem does not modify the posi-
tion of the object. In conclusion, the last surface Sn sees the object at infinity and the aperture stop located on
the surface S1. In other words, it is possible to evaluate the aberration coefficients of Sn without considering
the presence of the previous surfaces.

Since in the sequel we consider optical systems satisfying the above hypotheses, we now evaluate the aber-
ration coefficients of an optical system formed by a single concave conic mirror S with curvature radius
R = �2f and an aperture stop located in front of S at a distance df. We remark that f = �R/2 denotes the
absolute value of the focal length of S. Since the object is at infinity and N = �N 0 = 1, from (2) we derive
the distance of the image from the mirror
z0 ¼ �f : ð28Þ
In order to find the distance w 0 of the exit pupil from S we note that w = df so that from (3), (4) and (17) we
obtain
w0 ¼ f d
1� d

: ð29Þ

Me ¼
1

1� d
; c ¼ 1; d ¼ 0: ð30Þ
Moreover, the coefficients (10)–(13) become
C1 ¼ �
K þ 1

32f 3
; ð31Þ

C2 ¼
1

4f 2
; ð32Þ

C3 ¼ 0; ð33Þ

C4 ¼ �
1

2f
; ð34Þ
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whereas the relations (18)–(21) assume the form
C�1 ¼ �
K þ 1

32f 3
; ð35Þ

C�2 ¼
1

8f 2
ð2� ðK þ 1ÞdÞ; ð36Þ

C�3 ¼
d

16f
ð4� ðK þ 1ÞdÞ; ð37Þ

C�4 ¼ �
1

16f
ð8� 12dþ 3ðK þ 1Þd2Þ: ð38Þ
Since we have just one surface, the coefficients of total spherical aberration and coma, i.e., DS,1 and DS,2 given
by (23) and (24), coincide with (35) and (36)
32f 3DS;1 ¼ �ðK þ 1Þ; ð39Þ
8f 2DS;2 ¼ 2� ðK þ 1Þd; ð40Þ
whereas the total coefficients of astigmatism and field curvature are
8f ðDS;4 � DS;3Þ ¼ 8f ðC�4 � C�3Þ ¼ �ð4� 4dþ ðK þ 1Þd2Þ; ð41Þ

DS;4 � 3DS;3 ¼ C�4 � 3C�3 ¼ �
1

2f
: ð42Þ
Moreover, the Petzval curvature radius is
Rp ¼ �f ; ð43Þ

We conclude this section noting that the calculations necessary to find the expressions of the aberration coef-
ficients of a complex system are very heavy. For this reason we have implemented a program by Mathematica
which evaluates analytically the aberration coefficients of the cameras or Cassegrain telescopes considered in
the next sections.

3. Houghton’s camera: first form

The optical scheme we consider in this section is represented in Fig. 2. It is formed by a concave mirror S

with an aperture stop A located in front of it at a distance df, where f = �R/2 is the focal length of S and
R(<0) its radius of curvature. At the plane of A there is a corrector H formed by two spherical lenses, made
by the same glass, whose curvature radii Ri, i = 1, . . . , 4, satisfy the conditions
R1 ¼ �R3; R2 ¼ �R4: ð44Þ

When the thickness of these lenses goes to zero and (44) are verified, an afocal system is obtained for any

wavelength since the focal length of two adjacent thin lenses is given by the relation
f ¼ 1

ðc1 � c2 þ c3 � c4ÞðN � 1Þ ; ð45Þ
A
H S

δ f

Fig. 2. Houghton’s camera.
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where ci = 1/Ri, i = 1, . . . , 4 denote the curvatures of the corrector surfaces and N is the refractive index of the
glass.

The expressions of the spherical aberration, coma, and astigmatism coefficients of S are obtained by (39)–
(41) for a4 = K = 0
DS;1 ¼ �
1

32f 3
; ð46Þ

DS;2 ¼
1

8f 2
ð2� dÞ; ð47Þ

DS;4 � DS;3 ¼ �
1

8f
ð2� dÞ2: ð48Þ
If the thickness of the lens forming Houghton’s corrector is supposed to be zero the following aberration coef-
ficients are obtained:
DH ;1 ¼ ðc1 � c2Þ2ðc1 þ c2Þ
ðN þ 1ÞðN � 1Þ2

4N
; ð49Þ

DH ;2 ¼ �ðc2
1 � c2

2Þ
ðN 2 � 1Þ

2N
; ð50Þ

DH ;4 ¼ DH ;3: ð51Þ
The system is aplanatic when the curvature radii verify, for assigned DS,1, DS,2, the following equations:
DH ;1 þ DS;1 ¼ 0; DH ;2 þ DS;2 ¼ 0: ð52Þ

When the expressions (49) and (50) are inserted into (52), the sixth-degree system is obtained:
ðc1 � c2Þ2ðc1 þ c2Þ
ðN þ 1ÞðN � 1Þ2

4N
¼ �DS;1; ð53Þ

ðc2
1 � c2

2Þ
ðN 2 � 1Þ

2N
¼ DS;2; ð54Þ
whose solutions supply the curvatures of the two lenses which eliminate spherical aberration and coma. It is
very important to remark that this system is equivalent to a linear one, so that the aforesaid curvatures are
uniquely determined. In fact, eliminating c2

1 � c2
2 from (54) and (53) one has
c1 � c2 ¼ �
2DS;1

ðN � 1ÞDS;2
: ð55Þ
Taking into account this formula, (53) and (54) become
c1 � c2 ¼ �
2DS;1

ðN � 1ÞDS;2
; ð56Þ

c1 þ c2 ¼ �
ND2

S;2

ðN þ 1ÞDS;1
; ð57Þ
whose unique solution is
c1 ¼ �
2ðN þ 1ÞD2

S;1 þ NðN � 1ÞD3
S;2

2ðN 2 � 1ÞDS;1DS;2
; ð58Þ

c2 ¼
2ðN þ 1ÞD2

S;1 � NðN � 1ÞD3
S;2

2ðN 2 � 1ÞDS;1DS;2
: ð59Þ
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Finally, using (46) and (47) and recalling that Ri = 1/ci, the radii of the doublet are obtained
R1 ¼ f
4ðN 2 � 1Þð2� dÞ

ðN þ 1Þ þ NðN � 1Þð2� dÞ3
; ð60Þ

R2 ¼ �f
4ðN 2 � 1Þð2� dÞ

ðN þ 1Þ � NðN � 1Þð2� dÞ3
: ð61Þ
Moreover, the astigmatism is absent when (see (48) and (51)):
ðDH ;4 þ DS;4Þ � ðDH ;3 þ DS;3Þ ¼ DS;4 � DS;3 ¼ �
1

8f
ð2� dÞ2 ¼ 0; ð62Þ
i.e., when the aperture stop A is situated at the curvature center of S (d = 2) and increases when A is closer to
the mirror S. In other words, the astigmatism of the whole combination coincides with the astigmatism of the
primary mirror, since the doublet does not contribute to it, at least when the thickness of the lenses constitut-
ing the doublet vanishes. However, we cannot eliminate the astigmatism by positioning the aperture stop at
the curvature center of the mirror since, when d! 2, owing to (60) and (61), the radii R1 and R2 go to zero.
Fig. 3, in which ri = Ri/f, shows graphically all these conclusions and suggest to choose d 2 [0.7,1.2]. We note
that the continuous line refers to r1, whereas the dashed line to r2.

When d ’ 1.2, the radii R1 and R2 are still sufficiently high and the astigmatism is acceptable for a photo-
graphic use and the tube is still shorter than in an equivalent Schmidt’s Camera.

With the previous formulae, very good results are obtained if d ’ 0.7 and the speed of S is slower than f/4.
When the speed of S belongs to the interval (f/4, f/3), the curvatures supplied by (60) and (61) are too strong so
that higher-order aberrations appear and the astigmatism is not acceptable. Moreover, the thickness is not
negligible and the corrector is not afocal since (45) is no more valid. However, the program HCamera, which
we have written by Mathematica, uses the exact third-order formulae and solve them with Newton’s method
starting from the values of the radii given by (60) and (61). It is also possible to balance third and fifth-order
spherical aberration and coma. Finally, the program modifies the value of the fourth radius in order have an
afocal corrector also for finite thickness, reducing the chromatic aberrations.

Fig. 4 shows the spot diagram obtained with the professional program OSLO of a camera with a corrector
having a diameter D = 20 cm, a principal mirror S with a focal ratio f/3.5 and a total length of 85 cm.

This camera satisfies the photographic criterion since the aberration spot has a diameter less than 0.025 mm
on a film 24 · 36 mm.

4. Houghton’s camera: second form

A way to reduce the curvature of the lenses, and consequently the higher-order aberrations, consists in
adopting four different values of the radii of the lenses forming the doublet. Then, we

• impose that the value of c4 makes afocal the doublet (see (45)):
c4 ¼ c1 � c2 þ c3; ð63Þ
0.8 1.2 1.4 1.6 1.8 2
δ

-8

-6

-4

-2

r1, r2

Fig. 3. Radii versus distance from mirror.
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• determine a convenient criterion to choose c3;
• require that the remaining curvatures c1 and c2 make aplanatic the whole combination.

In order to satisfy the previous conditions, we use our program HCamera to show that the relations (53)
and (54) are substituted by the following others:
ðc1 � c2Þðc2 � c3Þ �
1

8
ð3c1 � 2c2 þ c3ÞðN þ 1Þ þ 1

4N
ð2c1 � c2 þ c3Þ þ

1

4
ðc1 � c2ÞN 2

� �
¼ �DS;1; ð64Þ

� ðc1 � c2Þðc2 � c3Þ
N 2 � 1

2N
¼ �DS;2: ð65Þ
Moreover, also in this case, the doublet does not contribute to the astigmatism since
DH ;4 � DH ;3 ¼ 0: ð66Þ

Again, this system, which looks to be of the sixth degree, is equivalent to a second-degree system. In fact, with
the notations
x ¼ c1

c3

¼ R3

R1

; y ¼ c2

c3

¼ R3

R2

; ð67Þ
it can be written as
ðy � 1Þðx� yÞ � 1

8
ð3x� 2y þ 1ÞðN þ 1Þ þ 2x� y þ 1

4N
þ N 2

4
ðx� yÞ

� �
¼ �DS;1R3

3; ð68Þ

ðx� yÞðy � 1ÞN
2 � 1

2N
¼ DS;2R2

3: ð69Þ
Writing (69) in the form
ðx� yÞðy � 1Þ ¼ 2N

N 2 � 1
DS;2R2

3 ð70Þ
and substituting this relation into (68), we obtain the second-degree system
� 1

8
ð3x� 2y þ 1Þ þ 2x� y þ 1

4N
þ N 2

4
ðx� yÞ ¼ �N 2 � 1

2N
DS;1

DS;2
R3; ð71Þ

ðx� yÞðy � 1Þ ¼ 2N

N 2 � 1
DS;2R2

3: ð72Þ
Taking into account (46) and (47), we finally have
a1xþ a2y ¼ d1; ð73Þ
ðx� yÞðy � 1Þ ¼ d2: ð74Þ
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where
a1 ¼
4� 3N � 3N 2 þ 2N 3

8N
; ð75Þ

a2 ¼
�1þ N þ N 2 � N 3

4N
; ð76Þ

d1 ¼ �
1

8
� 1

4N
þ N

8
þ ðN

2 � 1Þr3

8Nð2� dÞ ; ð77Þ

d2 ¼
N

4ðN 2 � 1Þ
ð2� dÞr2

3; r3 ¼
R3

f
: ð78Þ
This system has the following two solutions:
r1 ¼ 2r3

a1ða1 þ a2Þ
�a1ða2 � 2d1Þ þ a2ð�a2 þ d1 þ

ffiffiffiffi
D
p
Þ
; ð79Þ

r2 ¼ 2r3

a1 þ a2

a1 þ a2 þ d1 �
ffiffiffiffi
D
p ; ð80Þ
or
r1 ¼ �2r3

a1ða1 þ a2Þ
a1ða2 � 2d1Þ þ a2ða2 � d1 þ

ffiffiffiffi
D
p
Þ
; ð81Þ

r2 ¼ 2r3

a1 þ a2

a1 þ a2 þ d1 þ
ffiffiffiffi
D
p ; ð82Þ
which are real, provided that the discriminant
D ¼ ða1 þ a2 þ d1Þ2 � 4ða1 þ a2Þðd1 þ a1d2Þ ð83Þ
is not negative.
Substituting (75)–(78) into (79)–(82), all the acceptable values of r3 corresponding to a given d can be deter-

mined. The subset of the plane (r3,d), for which D is not negative, is represented in Fig. 5.
By Mathematica it is possible to analyze the behavior of the radii r1 and r2 on varying r3 in the set Id of the

acceptable values corresponding to a given d. Figs. 6 and 7 plot the variables r1, r2 and r4 versus r3 for d = 0.8.
More precisely, the first figure refers to the solution (79) and (80) and the second one to (81) and (82). The
chosen interval for d starts from the lower bound of Id.

In all the figures of this section the continuous line refers to r1, the line with longer dotting to r2 and the line
with shorter dotting to r4. Finally, Figs. 8 and 9 correspond to d = 1.1.
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Fig. 5. d versus r3.
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An analysis of the plots leads us to the following conclusions:

• the highest and, therefore, the most convenient values of r1, r2, r3 and r4 are obtained for d 2 [0.7,1];
• for an assigned d in this interval, the solution (79) and (80) and r3, r4 assume the highest values at the lower

bound of Id, whereas the solution (81), (82) and r3, r4 have to be evaluated at 0.8–0.9 of the lower bound.
For instance, for d = 0.8, from Fig. 5 we derive Id = [�1.65,�0.8], so that the solution (79) and (80) has to
be evaluated at r3 = �1.65, whereas (81) and (82) at r3 = �1.5 (see Figs. 6 and 7, which refers to solutions
(79)–(82), respectively);

• in any case, the second solution leads to greater values of the radii.

The program HCamera allows us to project a Houghton’s camera with different radii, taking into account the
thickness of lenses. Moreover, it supplies the possibility to require residual amounts of third-order spherical
aberration and coma to balance the corresponding fifth-order aberrations. Finally, the radii obtained in
Fig. 6. Behaviour of the solution (79) and (80) for d = 0.8.

Fig. 7. Behaviour of the solution (81) and (82) for d = 0.8.

Fig. 8. Behaviour of the solution (79) and (80) for d = 1.1.
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Fig. 10. Spot diagram.
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output make afocal the corrector for a not vanishing thickness of the lenses. Good results are obtained for
mirror whose speed is slower or equal to f/3. Fig. 10 shows the spot diagram of a camera with a corrector
with a diameter of 20 cm, a mirror f/3 and a total length equal to 75 cm.
5. Houghton’s camera: third form

If we accept the idea to introduce aspherical surfaces, it becomes possible to eliminate astigmatism by
adopting a conic mirror S. It has already been noted that the corrector does not introduce astigmatism when
it is afocal and has no thickness. Consequently, the total astigmatism of the whole combination coincides with
that one of the primary mirror. Taking into account (41), we reach the conclusion that it is possible to eliminate

this aberration for any position of the aperture stop, that is for any d > 0, provided that the conic constant of S

results
K ¼ �ðd� 2Þ2

d2
: ð84Þ
For this value of the conic constant of S, the spherical aberration and coma coefficients (39) and (40) become
DS;1 ¼
1� d

8f 3d2
; DS;2 ¼

d� 2

4f 2d
: ð85Þ
Finally, if these expressions are inserted into (58) and (59), the following formulae for the radii of a first-form
doublet are derived:
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R1 ¼
4dðN 2 � 1Þðd� 2Þðd� 1Þ

�2ðd� 1Þ2 þ N 2dðd� 2Þ3 � Nð2� 12dþ 14d2 � 6d3 þ d4Þ
; ð86Þ

R2 ¼
4dðN 2 � 1Þðd� 2Þðd� 1Þ

2ðd� 1Þ2 þ N 2dðd� 2Þ3 � Nð2þ 4d� 10d2 þ 6d3 � d4Þ
: ð87Þ
The behavior of the radii versus d is shown in Fig. 11.
We conclude by noting that when d 2 [1.4,2], the radii of the corrector surfaces become smaller and

consequently higher-order aberrations appear. Convenient values of d belong to the interval [1.2,1.4]. Our
program HCamera uses all the previous formulae to derive the curvature radii of Houghton’s corrector as well
as the conic constant of the mirror. Then, starting from these data and taking into account the thickness of the
lenses, it evaluates the correct final values of the above quantities which balance the fifth-order aberrations. An
example of the excellent performance of a camera of the third form, whose primary conic mirror S has a
diameter D = 200 mm and a focal ratio f/2.5, is shown in Fig. 12.

All the results discussed in the above sections can be summarized as follows:

• if a conic mirror S is used, excellent Houghton’s cameras can be obtained with speed up to f/2.5 and about
40% shorter than the corresponding Schmidt’s cameras;

• with only spherical surfaces we can project good cameras with speed up to f/3.5, if the lens of the corrector
have paired radii, and up to f/3, if the lens of the corrector have different radii. Moreover, these cameras are
about 50% shorter than Schmidt’s ones.
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Fig. 11. Behaviour of the solution (86) and (87).

Fig. 12. Spot diagram for a camera f/2.5.
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6. Houghton–Cassegrain telescope

In this section, the Houghton–Cassegrain telescope is briefly considered. Essentially, neglecting the thick-
ness of the lenses of corrector we can apply all the results described in the previous sections provided that,
instead of the spherical aberration coefficient (46) and the coma coefficient (47) of a spherical mirror, we con-
sider the corresponding coefficients of the Cassegrain combination (see, for instance [10]).

We only note that the elimination of the aberrations of this configuration is more simple than in the
photographic camera for the following two reasons:

• owing to the longer focal of a telescope with respect to a camera, the field angle is smaller together with the
off-axis aberrations;

• the secondary mirror partially compensate the aberrations of the primary one.

In conclusion, the corrector has to balance the residual aberrations of a Cassegrain configuration for smaller
field angles. However, it is important to remark that the correction of aberrations has to be much more accu-
rate, if the diffraction limit has to be reached.

We adopt the same method than for Houghton’s camera. We have written by Mathematica the program
HCassegrain which allows us to obtain the radii of curvature of the corrector taking into account both the
finite thickness of the lenses and the balancing of third-order and fifth-order aberrations. Fig. 13 shows the
spot diagram of a telescope based on this procedure. This telescope, whose equivalent focal is 200 cm, uses
a primary mirror with a diameter of 20 cm and a speed f/2.5. This telescope is 40 cm length and has an
obstruction factor of 31%. Noting that the circles in Fig. 13 represent the Airy disk, we can say that the
telescope is diffraction limited.
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